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In the early 1980s, we proposed a unifying
model for ß-cell damage (The OKAMOTO
model), in which poly(ADP-ribose) syn-
thetase/polymerase (PARP) activation plays an
essential role in the consumption of NAD+,
which leads to energy depletion and necrotic
cell death. In 1984, we demonstrated that the
administration of PARP inhibitors to 90% dep-
ancreatized rats induces islet regeneration.
From the regenerating islet-derived cDNA
library we isolated Reg (Regenerating Gene)
and demonstrated that Reg protein induces ß-
cell replication via the Reg receptor and ame-
liorates experimental diabetes. More recently,
we showed that the combined addition of IL-6
and dexamethasone induces the Reg gene

expression in ß-cells and that PARP inhibitors
enhance the expression. In 1993, we found that
cyclic ADP-ribose (cADPR), a product synthe-
sized from NAD+, is a second messenger for
intracellular Ca2+ mobilization for insulin secre-
tion by glucose, and proposed a novel mecha-
nism of insulin secretion, the CD38-cADPR sig-
nal system. 

Therefore, PARP inhibitors prevent ß-cell
necrosis, induce ß-cell replication and maintain
insulin secretion.
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In this paper, we would like to present a per-
spective view based on our studies concerning
cell death, cell regeneration, and cell function,
especially on insulin-producing pancreatic ß-
cells, in the processes of which poly(ADP-
ribose) synthetase/polymerase (PARP) and
cyclic ADP-ribose (cADPR) are functioning.

PANCREATIC ß-CELL DEATH BY PARP
ACTIVATION

In 1981, we published two papers, one of
which was concerned with in vitro experiments
[1] and the other with in vivo experiments [2],
describing that streptozotocin and alloxan
induce DNA strand breaks and PARP in pan-

creatic islets, and proposed a unifying model
for the action of diabetogenic agents, strepto-
zotocin and alloxan, on pancreatic ß-cells [3].
Central to the model are breaks in the nuclear
DNA of ß-cells, resulting from either an accu-
mulation of free radicals or from alkylation of
DNA. These breaks induce DNA repair involv-
ing the activation of PARP, which uses cellular
NAD+ as a substrate. As a result, the intracellu-
lar levels of NAD+ fall dramatically. The fall in
cellular NAD+ inhibits cellular functions
including insulin synthesis and secretion, and
thus the ß-cell ultimately dies. Thus, this
appears to be a suicide response for ß-cells to
repair DNA. The NAD+ depletion and the
decrease in ß-cell functions, induced by alloxan
and streptozotocin, were shown to be prevent-
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FIGURE 1
A unifying model for ß-cell damage and its prevention in toxin- or virus-induced and immune diabetes (The OKAMOTO model) (adopt-
ed from [8-10, 100]). The ß-cell damage is theoretically preventable through inhibition of the serial reactions, as indicated by shaded
arrows. One method is by inhibiting abnormal immune reactions with immunomodulators such as cyclosporin, linomide and OK-432.
Others include scavenging the radicals, which break DNA, by superoxide dismutase and other radical scavengers, and inhibiting the
PARP by specific inhibitors such as nicotinamide, 3-aminobenzamide and picolinamide to prevent the decrease in the NAD+ level. IL-
1ß, interleukin-1ß. NO•, nitric oxide.



ed by radical scavengers such as superoxide dis-
mutase and catalase and by PARP inhibitors [4,
5].

Interest in the model for the mechanism of
action of alloxan and streptozotocin has been
heightened by its possible extension to the
effects of viruses and inflammation, especially
immune-mediated events on ß-cells [3, 6-10].
Thus, since the early 1980s, we have thought
that, although type 1 (insulin-dependent) dia-
betes can be caused by many different agents
such as immunologic abnormalities, inflamma-
tory tissue damage, and ß-cytotoxic chemical
substances, the final pathway for the toxic
agents is the same (Figure 1). This pathway
involves DNA damage, PARP activation, and
NAD+ depletion. The fall in cellular NAD+

inhibits cellular activities. Therefore, type 1
(insulin-dependent) diabetes is theoretically
preventable by suppressing immune reactions,
scavenging free radicals, and inhibiting PARP
by nicotinamide and 3-aminobenzamide.
Concerning nitric oxide (see Figure 1), we pro-
duced transgenic mice expressing nitric oxide
synthase constitutively in pancreatic ß-cells and
found that the ß-cell mass was markedly
reduced and that the transgenic mice developed
severe diabetes [11]. In 1999, using PARP defi-
cient mice, three independent groups in
Germany, Japan and U.S.A. provided
irrefutable support for the model shown in
Figure 1: PARP deficient mice were remarkably
resistant to streptozotocin and did not show
the ß-cell death [12-15]. More recently, many
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FIGURE 2
Comparison of two types of cell death, necrosis and apoptosis.



other tissues and cells have been reported to die
by the same mechanism as in pancreatic ß-cell
death [16-35]. 

The cell death caused by PARP activation
described above is thought of in terms of necro-
sis [36]. In apoptotic cell death, PARP is
cleaved by caspases and inactivated. Therefore,
PARP inhibitors can be effective in preventing
necrosis but ineffective in preventing apoptosis
(Figure 2). “Whether to die from necrosis or to
die from apoptosis” may depend on the severi-
ty and duration of the cell damage, differences
in death signals, and the species of cells. A
recent report from Bhardwaj’s laboratory sug-
gests that dendritic cells distinguish between
two types of cell death, with necrosis providing
a control that is critical for the initiation of
immunity [37]. Therefore, immunological
abnormalities, which are frequently observed in
type 1 diabetes, may be triggered by the pre-
ceding necrotic cell death, and then cause apop-
totic death of ß-cells. 

ß-CELL REGENERATION AND REG GENE

As described above, alloxan and streptozo-
tocin diabetes can be prevented by PARP
inhibitors. Concerning experimental diabetes,
at the end of the 19th century von Mering and
Minkowski in Strasbourg found that a dog
became glycosuric and hyperglycemic by pan-
createctomy. This observation stimulated many
workers to try to isolate the active pancreatic
principle as a possible treatment for diabetes.
In 1984, we demonstrated that PARP inhibitors
induce the regeneration of pancreatic ß-cells,
thereby ameliorating surgical diabetes [38].
Male Wistar rats were 90% depancreatized,
and nicotinamide or 3-aminobenzamide was
injected intraperitoneally every day. The
administration of PARP inhibitors ameliorated
the surgical diabetes, and the islets in the
remaining pancreases of rats that had received

PARP inhibitors for 3 months were extremely
large, and almost the entire areas of the
enlarged islets were stained for insulin.

We isolated the regenerating islets and con-
structed a cDNA library. In screening the regen-
erating islet-derived cDNA library, we came
across a novel gene expressed in regenerating
islets. The cDNA had one large open reading
frame which encoded a 165-amino acid pro-
tein. The deduced protein has a signal
sequence. We propose to name the novel gene
Reg, that is, regenerating gene, with the impli-
cation that the gene may be involved in islet
regeneration [39]. We subsequently isolated
human REG gene [39, 40]. Rat Reg protein
increases [3H]thymidine incorporation in rat
islets, and mitosis was often observed [41]. We
intraperitoneally injected rat Reg protein (1
mg/kg/day) to 90% depancreatized rats. On the
30th and 60th postoperative day, the fasting
plasma glucose level of the rats receiving Reg
protein was significantly lower than that of the
90% depancreatized control rats. After 2
months, almost all the islets of the 90% depan-
creatized control rats were destroyed. In con-
trast, the islets of the remaining pancreas in the
Reg protein-treated rats were enlarged and the
enlarged islets were densely and almost entirely
stained for insulin [41]. These results indicate
that Reg protein stimulates the regeneration
and/or growth of pancreatic ß-cells, thereby
ameliorating the surgical diabetes. 

Recently, we isolated a Reg protein receptor
cDNA from a λ ZAP II rat islet cDNA expres-
sion library [42]. The cDNA encoded a 919-
amino acid protein, and the amino acid
sequence suggested that the protein is a type II
transmembrane protein with a long extracellu-
lar domain. We also isolated a human cDNA
that shows over 97% amino acid identity to the
rat homologue. The rat Reg receptor-express-
ing CHO cells bound rat Reg protein with high
affinity (Kd = 4.4 nM). The binding of 125I-
labeled rat Reg protein was displaced by
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increasing the concentration of unlabeled rat
Reg protein. Human REG protein, which
shows 70% amino acid identity to rat Reg pro-
tein, also bound to the CHO cells (Kd = 14.0
nM), but higher concentrations of human REG
protein were required for the displacement of
the rat Reg protein. We established several cell
lines of RINm5F cells overexpressing the Reg
receptor. The cell lines showed significant
increases in BrdU incorporation in the presence
of 0.3-100 nM rat Reg protein. Moreover, the
cell numbers were increased in response to Reg
protein. The receptor mRNA was expressed in
normal pancreatic islets, regenerating islets and
a pancreatic ductal cell line, ARIP cells, that
proliferate in a Reg protein-dependent manner.

The receptor mRNA expression was
unchanged during islet regeneration [42]. This
suggests that the regeneration and proliferation
of pancreatic ß-cells are primarily regulated by
the Reg gene expression. Accordingly, the tran-
scriptional activation is of great importance in
ß-cell regeneration. More recently, we found
that Reg gene is activated by interleukin-6 (IL-
6), dexamethasone, and PARP inhibitors [43].
The combined addition of IL-6 and dexam-
ethasone increased the Reg mRNA level, and
further addition of nicotinamide or 3-
aminobenzamide increased the mRNA even
more. Progressive deletion of the 5’-flanking
region of rat Reg gene revealed that the region
between nucleotides -81 and -70 is essential for
the Reg gene promoter activity. The sequence is
“TGCCCCTCCCAT”. Similar GC box-like
sequences were also observed in mouse and
human Reg genes. The site-directed mutated
luciferase construct “TGCCCCTAACAT”
abolished the induction. The mutant (“TGCC-
CCGCCCAT”), which changed the sequence to
a GC box, and the mutant (“TGCCCCACC-
CAT”), which changed the sequence of the rat
Reg promoter to those of human REG genes,
REG Iα [40] and REG Iß [44], showed the
induction. In gel mobility shift assays (GMSA)

with the GC box-like sequence, the intensity of
the band, which was detected in the nuclear
extracts of RINm5F cells treated with IL-6,
dexamethasone and/or nicotinamide, was cor-
related with the luciferase activity [43]. The
addition of NAD+ to nuclear extracts attenuat-
ed the band, and nicotinamide and 3-
aminobenzamide quenched the effect of NAD+.
These results suggest that PARP participates in
the formation of the active transcriptional
DNA/protein complex and that the formation
of the active complex was inhibited by the
poly(ADP-ribosyl)ation of nuclear proteins.
The involvement of PARP in the active tran-
scriptional complex was evidenced by the fact
that the active transcriptional complex was
stained by an anti-PARP antibody after GMSA
analysis. The involvement of PARP in the active
complex was further evidenced by the immun-
odepletion of PARP [43]. Southwestern experi-
ments showed that a 113 kDa nuclear protein,
the molecular weight of which corresponds to
PARP, bound the GC box-like sequence. The
band was recognized by the antibody to PARP.
In fact, a purified recombinant PARP bound
the cis-element. When nuclear extracts were
incubated in the GMSA reaction in the pres-
ence of [32P]NAD+ and the reaction products
were analyzed, only PARP was labeled. This
suggests that PARP in the transcriptional com-
plex auto-poly(ADP-ribosyl)ates itself.

Thus, as shown in Figure 3, inflammatory
mediators, IL-6, and glucocorticoids induce the
formation of an active transcriptional complex
for Reg gene, in which PARP is involved, and
the Reg gene transcription proceeds. On the
other hand, during inflammation, superoxide
(O2

•) and nitric oxide (NO•) are produced and
cause DNA damage. In this case, PARP is acti-
vated by DNA nicks for the DNA repair. Then,
PARP poly(ADP-ribosyl)ates PARP itself, the
poly(ADP-ribose) chains on the PARP protein
inhibit the formation of the active transcrip-
tional complex, and the Reg gene transcription
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is stopped. In the presence of PARP inhibitors
such as nicotinamide, the PARP is not
poly(ADP-ribosyl)ated, the transcriptional
complex is stabilized, and the Reg gene tran-
scription proceeds. Therefore, PARP inhibitors
keep PARP active as a transcription factor for
ß-cell regeneration. This can account for the
previous observation of islet regeneration in
90% depancreatized rats treated with PARP
inhibitors [38] and also supports our previous
proposition that the restriction of ß-cell repli-
cation is relieved by PARP inhibitors [6]. When
DNA is massively damaged, PARP is rapidly
activated to repair the DNA, as mentioned in
the first part of this paper, and the complex for
Reg gene transcription is not formed at all.

Recently, Reg and Reg-related genes have

been isolated and revealed to constitute a
multigene family, the Reg gene family [44-63].
Based on the primary structures of the Reg pro-
teins, the members of the family are grouped
into three subclasses, type I, II, III [45, 52].
Type I (and Type II) Reg proteins, about which
we have discussed above, are expressed in
regenerating islets [45]. Type III Reg proteins
have also been suggested to be involved in cel-
lular proliferation in intestinal cells, hepatic
cells, and neuronal cells. In fact, a Cambridge
group reported that mouse Reg III is a Schwann
cell mitogen accompanying the regeneration of
motor neurons [64], and a French group
recently reported that Reg protein functions as
a neurotrophic factor for motor neurons [65].
A Kyoto group reported that regenerating gene
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FIGURE 3
Representation of the unified role of PARP in the Reg gene transcription and DNA repair (adopted from [43]). 



protein may mediate the gastric mucosal prolif-
eration induced by hypergastrinemia in rats
[66-68]. The expression of Reg protein receptor
mRNA was also detected in liver, kidney, stom-
ach, small intestine, colon, adrenal gland, pitu-
itary gland, and brain [42], suggesting the pos-
sible involvement of the Reg protein-Reg recep-
tor signal system in a variety of cell types other
than pancreatic ß-cells.

THE CD38-cADPR SIGNAL SYSTEM FOR
INSULIN SECRETION IN ß-CELLS

cADPR is synthesized from NAD+, and our

results have shown that cADPR is a second
messenger for intracellular Ca2+ mobilization
for insulin secretion in pancreatic ß-cells.
Therefore, decreases in the NAD+ level (see
Figure 1) can cause decreases in cADPR and
then in insulin secretion.

Glucose induces an increase in the intracellu-
lar Ca2+ concentration in pancreatic ß-cells of
the islets of Langerhans to cause the secretion
of insulin. This increase in the Ca2+ concentra-
tion was first explained in 1984 by the hypoth-
esis of Ashcroft et al. of Oxford University
[69], in which Ca2+ is provided extracellularly.
That is, millimolar concentrations of ATP, pro-
duced in the process of glucose metabolism,
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FIGURE 4
Insulin secretion by glucose stimulation in ß-cells (adopted from [100]). The insulin secretion via the CD38—cADPR sig-
nal system is shown in red. cADPR binds to FKBP12.6 to release Ca2+, dissociating FKBP12.6 from RyR [81]. CaM kinase
II phosphorylates RyR to sensitize and activate the Ca2+ channel (Pi, phosphorylation of RyR by CaM kinase II) [84]. Ca2+,
released from intracellular stores and/or supplied from extracellular sources, further activates CaM kinase II and amplifies
the process. In this way, Ca2+-induced Ca2+ release (CICR) can be explained. The conventional insulin secretion mechanism
by Ca2+ influx from extracellular sources [69] is shown on in black. ADPR, ADP-ribose.



inhibit the potassium channel, inducing mem-
brane depolarization and the opening of the
voltage-dependent Ca2+ channels. In 1993, we
proposed another model of insulin secretion by
glucose via cADPR-mediated Ca2+ mobilization
from an intracellular Ca2+ pool, the endoplas-
mic reticulum [70], as shown in Figure 4. That
is, ATP inhibits the cADPR hydrolase of CD38,
causing the accumulation of cADPR, which
acts as a second messenger for Ca2+ mobiliza-
tion from the endoplasmic reticulum for insulin
secretion. The first important issue is whether
the accumulation of cADPR is actually caused
by glucose stimulation in pancreatic islets. We
incubated normal rat (Wistar) and mouse
(C57BL/6J) islets with low (2.8 mM) glucose

and high (20 mM) glucose, and assayed the
cADPR content in the islets by radioim-
munoassay using an anti-cADPR antibody. The
cADPR content of islets incubated with high
glucose was increased within 5 min, whereas
the cADPR content of islets incubated with low
glucose was not [71]. Next, we used rat pan-
creatic islet microsomes as a cell-free system to
study Ca2+ release and found that cADPR
released Ca2+ from islet microsomes, as indicat-
ed by the observed prompt increase in fluo 3
fluorescence [70, 71]. Inositol 1,4,5-trisphos-
phate (IP3) did not cause the release of Ca2+,
and at this point, the islet microsomes were still
responsive to cADPR. We then used rat cere-
bellum microsomes. IP3 caused a release of Ca2+
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FIGURE 5
Roles of amino acid residues of CD38 in enzymic activities (adapted from [76]). Glu-226 is essential for ADP-ribosyl
cyclase. Cys-119 and Cys-201 are essential for cADPR hydrolase [77]. Lys-129 is cADPR binding site and essential for
cADPR hydrolase [78]. ATP competes with cADPR for the binding site (Lys-129), inhibiting the cADPR hydrolysis to accu-
mulate cADPR. [Enzyme-ADPR*] is proposed as an enzyme-stabilized ADP-ribosyl oxocarbonium ion intermediate [76].



from cerebellum microsomes. cADPR also
caused a release of Ca2+. Heparin, an inhibitor
of IP3 binding to its receptor, blocked the IP3-
induced Ca2+ release from cerebellum micro-
somes, but did not block the cADPR-induced
Ca2+ release. These results indicate that islet
microsomes respond to cADPR but not to IP3.
In contrast, cerebellum microsomes respond to
both cADPR and IP3, but cADPR induces the
Ca2+ release via a different mechanism than
that utilized by IP3. We then examined the
effect of cADPR on insulin secretion using digi-
tonin-permeabilized pancreatic islets. cADPR
as well as Ca2+ induced insulin secretion, but
IP3 did not. The combined addition of cADPR
and Ca2+ did not induce significantly more
insulin secretion than the addition of cADPR or
Ca2+ alone. The cADPR-induced insulin secre-
tion was inhibited by the addition of EGTA.
These results suggested that the cADPR-
induced insulin secretion was mediated by Ca2+

mobilization from islet microsomes [70]. Thus,
we proposed that glucose stimuli induce
cADPR formation from NAD+. cADPR then
mobilizes Ca2+ from the endoplasmic reticulum,
serving as a second messenger for insulin secre-
tion.

The next question is why the glucose stimu-
lus induces the formation of cADPR. CD38 is a
300-amino acid protein and was first recog-
nized as a leukocyte antigen. We found that
CD38 is expressed in a variety of tissues includ-
ing pancreatic ß-cells [72, 73]. We and others
have found that CD38 has both ADP-ribosyl
cyclase, synthesizing cADPR from NAD+, and
cADPR hydrolase to produce ADP-ribose [72,
74, 75]. We purified human CD38 protein and
found that millimolar concentrations of ATP
inhibit the cADPR hydrolase activity of CD38,
competing with the substrate, cADPR [76]. The
competitive inhibition of the cADPR hydrolysis
by ATP suggests that ATP and cADPR bind to
the same site of CD38. We then labeled the
purified CD38 with an ATP analogue, 5’-p-flu-

orosulfonylbenzoyladenosine, and identified
the binding site for ATP and/or cADPR as the
lysine-129 of CD38 [76]. From these results
and other available evidence, we proposed that
CD38 catalyzes the formation of cADPR from
NAD+ and also the hydrolysis of cADPR to
ADP-ribose. As shown in Figure 5, lysine-129
of CD38 is the cADPR binding site, and ATP
competes with cADPR for the binding site,
resulting in the inhibition of the hydrolysis of
cADPR and then, in the accumulation of
cADPR [76]. Cysteine-119 and Cysteine-201
are essential for the hydrolase reaction [77],
and glutamic acid-226 for the NAD+ binding
[78].

cADPR has been thought to activate the
ryanodine receptor to release Ca2+ from the
intracellular stores, the endoplasmic reticulum
[70, 79, 80]. We have shown that the type 2
ryanodine receptor is expressed in rat pancreat-
ic islets [71]. Our experiments indicated that
cADPR did not bind directly to the ryanodine
receptor but may act on the receptor through a
mediator such as FK506-binding protein 12.6,
FKBP12.6, to release Ca2+. FK506 is one of the
most widely used immunosuppressive agents.
The cellular target for FK506 is thought to be
FKBP12 and FKBP12.6. Rat FKBP12 is com-
posed of 108 amino acids and is highly con-
served among human, mouse, bovine, and rab-
bit FKBP12. Rat FKBP12.6 is also a 108-amino
acid protein as are human and bovine
FKBP12.6. Rat islet microsomes contained
FKBP12.6, but did not contain FKBP12. It is of
great interest that cADPR was found to bind to
FKBP12.6 at a Kd value of 35 nM. The binding
of radiolabeled cADPR was inhibited by cold
FK506 as well as cADPR and neither struc-
turally nor functionally related analogues of
cADPR inhibited the cADPR binding to
FKBP12.6 [81]. These results indicate that
FKBP12.6 acts as a cADPR-binding protein
and strongly suggest that cADPR is the actual
ligand for FKBP12.6 since FK506 does not nor-
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mally exist in mammalian cells. FKBP12.6
occurs in rat islet microsomes. However, when
rat islet microsomes were treated with cADPR,
FKBP12.6 dissociated from the microsomes
and moved to the supernatant, releasing Ca2+

from the intracellular stores [81]. From these
results together with other experiments, it is
strongly suggested that, when cADPR binds to
FKBP12.6 in the ryanodine receptor and causes
the dissociation of FKBP12.6 from the ryan-
odine receptor to form the FKBP12.6-cADPR
complex, the channel activity of the ryanodine
receptor is thereby increased to release Ca2+

from the endoplasmic reticulum. As you can
also see in Figure 4, when FK506 is present,
cADPR cannot act on the ryanodine receptor to
release Ca2+ and the glucose-induced insulin
secreting machinery ceases to function. In fact,
when FK506 was used as an immuno-suppres-
sant in kidney transplantation, hyperglycemia
was observed in 20-35 per cent of the recipients
[82, 83]. The diabetogenic side effect of FK506
may be explained by the mechanism shown in
Figure 4. Furthermore, in the presence of
calmodulin, islet microsomes were sensitized to
cADPR at much lower concentrations for Ca2+

release, and the Ca2+ release was greatly
increased [84, 85]. These results and other
available evidence suggest that the cADPR-
mediated Ca2+ mobilization for insulin secre-
tion is achieved by the calmodulin-activated
CaM kinase II. Possibly, the activated kinase
phosphorylates the ryanodine receptor to sensi-
tize the Ca2+ channel for the cADPR signal.

To verify a novel mechanism of insulin secre-
tion, the CD38—cADPR signal system, we cre-
ated CD38 knockout mice [86]. The pancreatic
islets of CD38 knockout mice showed almost
no ADP-ribosyl cyclase activity. The glucose-
induced increase in the intracellular Ca2+ con-
centration was severely impaired in the knock-
out mouse islets, and the glucose-induced
insulin secretion was severely decreased. The
knockout islets, however, responded normally

to the extracellular Ca2+ influx stimulants
tolbutamide and KCl to secrete insulin [86, 87].
This suggests that the CD38—cADPR signal
system functions in the Ca2+ mobilization from
intracellular Ca2+ stores. The paradigm of
insulin secretion based on the CD38—cADPR
signal system, so far described, relies on a wide
body of evidence obtained in rat and mouse.
Our recent results indicate that the CD38—
cADPR signal system functions in insulin secre-
tion in man. We identified a missense mutation
in the CD38 gene [88, 89] in Japanese diabetic
patients [90]. The resulting CD38 protein
showed altered catalytic activities, with a
decreased production of cADPR. Furthermore,
circulating anti-CD38 autoantibodies have
been detected in 10-14% of Japanese [91] as
well as Caucasian diabetic patients [92-94].
The autoantibody altered the enzymic activity
of islet CD38 and insulin secretion in vitro.
These findings strongly suggest that the
CD38—cADPR signal system functions in
insulin secretion by glucose in man.

The CD38—cADPR signal system for insulin
secretion is different from the conventional
hypothesis [69] in which Ca2+ influx from
extracellular sources plays a role in insulin
secretion by glucose. Furthermore, the CD38—
cADPR signal system is also different from the
hypothesis proposed by Berridge and Irvine of
Cambridge University [95], in which IP3

induces Ca2+ release from the intracellular pool,
the endoplasmic reticulum. In this context, the
CD38—cADPR signal system was the focus of
intense debate [96-100]. Controversial results
were reported using diabetic ß-cells such as
ob/ob mouse islets and RINm5F cells, which
have been traditionally used for studying
insulin secretion in Europe and U.S.A. We
revealed that the Ca2+ release responses of these
diabetic ß-cell microsomes were quite different
from those of normal islet microsomes [71].
Microsomes from normal C57BL mouse islets
released Ca2+ in response to cADPR but scarce-
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ly in response to IP3. This response to cADPR
was completely attenuated by the prior addi-
tion of 8-amino-cADPR, an antagonist of
cADPR [101]. In contrast to normal islet
microsomes, ob/ob mouse islet microsomes
released only a small amount of Ca2+ by
cADPR but released much Ca2+ by IP3.
RINm5F cell microsomes responded well to IP3

to release Ca2+ but did not respond to cADPR.
RINm5F cells are rat insulinoma-derived
immortal cells and show almost no glucose-
induced insulin secreting ability. Furthermore,
the CD38 mRNA level was significantly
decreased in ob/ob islets [71], and in RINm5F
cells, CD38 mRNA was not expressed [73].
These results indicate that the CD38-cADPR
signal system for insulin secretion is used under
normal physiological conditions, and is

replaced by the IP3 system in diabetic ß-cells
such as ob/ob mouse islets and RINm5F cells.
In fact, Balb/c mouse islets showed distinct
increases in intracellular cADPR, Ca2+, and
insulin secretion by glucose [102], and MIN6
cells showed a dramatic Ca2+ mobilization in
response to cADPR via the ryanodine receptor
despite the fact that no response to IP3 was
observed [80].

Although IP3 has been thought to be a sec-
ond messenger for Ca2+ mobilization from
intracellular stores, as described above, cADPR
induces Ca2+ release from pancreatic islet
microsomes but IP3 does not. In cerebellum
microsomes, both cADPR and IP3 induced Ca2+

release. Therefore, cells can utilize two second
messengers, IP3 and cADPR, for Ca2+ mobiliza-
tion, depending on the species of cells as well as
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differences in cellular conditions, physiological
or pathological, performing a variety of cellular
functions. Recently, various physiological phe-
nomena from animal to plant cells become
understandable in terms of this novel signal
system [103-127]. In pancreatic acinar cells of
CD38-knockout mice, the acetylcholine-
induced Ca2+ oscillation was greatly reduced or
completely disappeared under a physiological
concentration of acetylcholine [126].
Furthermore, acetylcholine induced the cADPR
formation in normal acinar cells, but not in
CD38 knockout acinar cells. The IP3 formation
was very small in the presence of a physiologi-
cal concentration of acetylcholine and there
was no difference between normal and CD38
knockout cells. Probably, acetylcholine induces
the cADPR formation via the G-protein cou-
pled CD38 system [128]. In pancreatic ß-cells,
glucose is metabolized and induces the CD38-
cADPR system to secrete insulin. In many other
cells, hormones and neurotransmitters may reg-
ulate the CD38-cADPR signal system in a
receptor-coupled manner, such as in a G-pro-
tein-coupled manner, to express various physi-
ological responses.

CONCLUSION AND FUTURE PROSPECTS

In the first part of this paper, we described
that PARP activation causes NAD+ depletion
to form poly(ADP-ribose), resulting in necrotic
ß-cell death. More recently, accumulating evi-
dence has confirmed that the mechanism pro-
posed for ß-cell death is involved in the process
of the cell death of many tissues and cells. In
the second part, we described ß-cell regenera-
tion and Reg gene, showing that PARP acts as
a transcription factor for Reg gene, and that the
active transcriptional complex for Reg gene is
not formed when PARP is activated and auto-
poly(ADP-ribosyl)ated. Recently, Reg proteins
have been shown to be a growth factor for

Schwann cells, neuronal cells, and gastrointesti-
nal cells. In the last part, we described that the
cADPR formation from NAD+ is essential for
insulin secretion by glucose in ß-cells. Recently,
various physiological phenomena from animal
to plant cells become understandable in terms
of a novel signal system, the CD38-cADPR sig-
nal system. Therefore, the inhibition of the
PARP activity by PARP inhibitors results in at
least three important events in the cell: PARP
inhibitors prevent the necrotic cell death, keep
PARP active as a transcription factor for cell
regeneration, and maintain the formation of a
second messenger, cADPR, to achieve the cell
function (Figure 6).
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